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Summary

An experimental and computational study was

conducted at low nozzle pressure ratios (NPR's) of a

high-speed, single-expansion-ramp nozzle (SERN)

concept designed for efficient off-design performance.

In an effort to maximize nozzle performance, the

throat is translated to different axial locations to pro-

vide a variable expansion ratio and allow a more opti-

mum jet exhaust expansion at various flight

conditions. Three throat locations (expansion ratios)

were investigated to simulate the operation of this con-

cept at subsonic-transonic, low supersonic, and high

supersonic flight conditions.

The experimental study was conducted in the

Langley Jet Exit Test Facility. Internal (static) nozzle

performance was obtained at NPR's up to 13 for a low
Mach number, an intermediate Mach number, and a

high Mach number nozzle configuration with design

nozzle pressure ratios near 9, 42, and 102. Two

expansion-ramp surfaces, one concave and one con-
vex, were tested for each nozzle. Paint-oil flow and

focusing schlieren flow visualization techniques were
utilized to acquire additional flow data at selected
NPR's.

The Navier-Stokes code, PAB3D, was used with a

two-equation k-e turbulence model for the computa-

tional study. Nozzle performance characteristics were

predicted at NPR = 5, 9, and 13 for the concave ramp,
low Mach number nozzle and at NPR = 102 for the

concave ramp, high Mach number nozzle. Qualitative

comparisons with experimental results were obtained

at nozzle pressure ratios of 10 and 13 for the concave

ramp, high Mach number nozzle.

The initial experimental and computational results

of the translating-throat SERN concept indicated some

promising performance benefits. The experimental

results indicate that the concave ramp, low Mach num-

ber nozzle had the highest axial thrust ratio over the

test NPR range and had small values of resultant pitch
thrust-vector angle at the design condition. Computa-

tional solutions verified the axial thrust ratio perfor-

mance with predicted values within 1.5 percent of

experimental data. Translating the throat of the SERN

from a large expansion ratio to a small expansion ratio

provided a more optimum expansion for the flow at

low NPR's. In general, the nozzles with the concave

ramp surface outperformed their convex ramp surface

counterparts. The plume shear layer, oblique shock

system, and separation from the external expansion

ramp were observed in both the density gradients

along the nozzle centerline and in the predicted Mach
contours.

Introduction

Over many years, the advancement of exhaust

nozzle technology has paralleled the development of

gas turbine engines in the endless quest to fly faster

and higher than current technology allows. The earli-

est gas turbine engine exhaust system, used in aircraft

such as the F-80B, was a simple engine discharge con-

trol valve. With the addition of afterburning (AB)

capability to gas turbine engines in the late 1940's, it

became necessary to add variable geometry to exhaust

nozzles. Variable geometry provides the larger exit

area necessary for increased volumetric flow rate of

the gas stream during the AB operation. This action

prevents any increase in back pressure that would slow

the airflow through the engine and cause the engine to

stall (ref. 1). The first production supersonic fighter,

the F-100D, used a two-position convergent nozzle.

The F-101B incorporated a fully variable convergent

nozzle to maintain maximum performance over a wide

range of flight conditions.

The convergent-divergent (CD) nozzle was intro-
duced in the 1950's in an effort to further increase the

Mach number capability of military fighter aircraft.

The addition of a divergent section to a convergent

nozzle provided further expansion of the flow to

supersonic conditions at the nozzle exit; this resulted
in an increase in momentum thrust. Convergent-

divergent nozzles often incorporate variable geometry

to maintain high performance over a wide range of
flight conditions. The F-4 represented the first proof of

concept for the CD nozzle; now CD nozzles are uti-

lized in most supersonic military aircraft.

Nozzle design improvements continued through-
out the 1960's and 1970's with an emphasis on

increased installed thrust. The nonaxisymmetric

convergent-divergent nozzle was envisioned late in

this period, with prospects of installed performance

gains over the axisymmetric nozzles employed in air-
craft such as the F-14 and F-15. As a result of

improved nozzle integration with the airframe, the



nonaxisymmetricnozzle offers performance gains

from a reduction in aft-end drag (ref. 2). Nonaxisym-

metric designs also offer the designer additional free-

dom to integrate vectoring and reversing hardware
into the nozzle.

for the external expansion ramp of the nozzle. The

SERN may have additional advantages over axisym-
metric or 2DCD nozzles, which include a reduction in

weight and skin friction drag because of the short
lower cowl.

Future high-speed aircraft capable of fulfilling a

variety of missions may include military fighter-

bomber aircraft in the Mach 4 regime, military or

commercial transports in the Mach 5 regime, long-

range cruisers in the Mach 10 regime, and single-

or multiple-stage-to-orbit aerospace planes (ref. 3).

These vehicles will require a highly integrated propul-

sion system and airframe (fig. 1). Although it is neces-

sary for the propulsion system (inlet, engine, ejector,

and exhaust nozzle) to be highly integrated with the

airframe, the emphasis of this study is on the exhaust
nozzle.

The exhaust nozzle of future high-speed vehicles

will encounter large variations in back pressure over

the flight regime. Generally, these variations are han-

dled with a variable area nozzle that adjusts the exit

area to the change in back pressure. However, for
high-speed aircraft that encounter conditions where

nozzle pressure ratio (ratio of jet total pressure to

ambient pressure) reaches 600, variable geometry noz-

zles are impractical because of mechanical limitations

that limit extreme variations in expansion ratio (refs. 4

to 6). Therefore, the designer is faced with improving

the exhaust system performance of high-speed vehi-

cles at off-design conditions while staying within

existing mechanical limitations.

Studies to determine potential candidates for

future high-speed aircraft exhaust systems have

included performance comparisons of axisymmetric

nozzles, single-expansion-ramp nozzles (SERN's) and

two-dimensional convergent-divergent (2DCD) noz-
zles (refs. 4 to 6). All three nozzle candidates achieve

satisfactory performance levels with a fixed geometry

at on-design conditions; however, it is crucial to the

development of a high-speed aircraft to determine
which nozzle candidate performs best at off-design
conditions.

The single-expansion-ramp nozzle is a variable

area, nonaxisymmetric nozzle with a unique installa-

tion advantage for future high-speed vehicles because

the underside of the vehicle's afterbody can be used

Studies indicate that SERN's with one fixed

design point, like most fixed geometry nozzles, suffer

significant performance penalties at off-design condi-

tions because of changing expansion ratio require-

ments (ref. 7). Although the performance peak for a

SERN tends to cover a broader range of conditions as

a result of an internal and external expansion process,

a fixed design point (fixed expansion ratio) SERN still

cannot perform well at far off-design conditions. The

internal expansion process occurs between the nozzle

throat and the trailing edge of the cowl, whereas the

external expansion process occurs along the vehicle's

lower afterbody surface (expansion ramp). Therefore,

the maximum propulsive efficiency of SERN's is

highly dependent on nozzle pressure ratio and nozzle

expansion ratio (refs. 8 to 11). High-speed SERN's are

designed with a large expansion ratio necessary for

maximum performance at high speeds and altitudes.
However, at subsonic, transonic, and low supersonic

flight conditions, the expansion ratio is too large to

maintain attached, fully expanded flow along the

entire length of the expansion ramp. Consequently, the

flow overexpands and separates from the expansion-

ramp surface. Additionally, vortical flow may roll

over the sidewalls, creating low-pressure regions

along the ramp. These unfavorable conditions result in

decreased nozzle thrust, increased afterbody pressure

drag, and increased vehicle trim requirements to abate

the large moments produced along the vehicle's lower

afterbody surface.

The objective of this study was to investigate a

translating-throat SERN concept, designed to improve
the off-design performance of SERN, at low nozzle

pressure ratios. Translating the axial location of the

throat produces a nozzle with a variable expansion

ratio by changing the exit area. This effort to maxi-
mize nozzle performance allows for a more optimum

exhaust expansion at various flight conditions. An

illustration of the translating-throat SERN concept

designed for high performance at three Mach number

ranges is shown in figure 2. To improve nozzle perfor-

mance at off-design conditions, three actuated doors

are integrated into the vehicle's lower afterbody
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surface(expansionramp)toprovideavariableexpan-
sionratio.In thisillustration,aturbofanenginewitha
drop-downinletisutilizedfor propulsionduringlow-
speedflight conditions.For takeoffandlow Mach
numberoperationatsubsonicandtransonicflight con-
ditions,door1opensto diverttheflow internallyto a
throatlocationneartheendof thelongexternalexpan-
sionramp.Thisdiversionof flow yieldstherelatively
smallexpansionratio necessaryfor optimumexpan-
sion at low operatingNPR's.As thevehiclegains
speedandaltitudein thelowsupersonicflight regime,
door1closesanddoor2 opensatthemidthroatloca-
tion to providea larger expansionratio as NPR
increases.At highsupersonicflight conditions,door2
closesanddoor3 opensto form thelargerexpansion
rationecessaryfor optimumperformanceathighoper-
atingNPR's.At evenhigherspeeds,thegasturbine
engineis shutoff, all threedoorsareclosed,andthe
vehicleusesa ramjetor scramjetenginefor propul-
sion.Thethreedoorsremainclosedfor high-speed
cruiseoperation,andtheundersideof thevehicleaft
end actsas a fixed expansionramp.This concept
could beadaptedto differentengineconfigurations
anddesignedto includemorethanthreeMachnumber
ranges.

etryprovideda bettersurfacefor attached,expanding
flow alongthe upperexpansionramp.The internal
nozzleperformanceof the six nozzles(table1) was
obtainedatnozzlepressureratiosfrom2to 13.Paint-
oil flow and focusingschlierenflow visualization
techniqueswereusedatselectedNPR'sto obtainaddi-
tionalinformationabouttheflowexpansionalongthe
expansionramp.

TheNavier-StokescodePAB3Dwitha k-e turbu-

lence model was used for the computational study. For

quantitative and qualitative comparisons with experi-
mental results, a two-dimensional computational

domain was used to predict internal nozzle perfor-

mance at NPR' s of 5, 9, and 13 for the concave ramp,
low Mach number nozzle and at NPR's of 10, 13, and

102 for the concave ramp, high Mach number nozzle.

This publication includes a discussion of compu-

tational fluid dynamics (CFD) and experimental

results and presents predicted flow characteristics

compared with data obtained from the paint-oil flow

and focusing schlieren flow visualization techniques.

Symbols

Although the vehicle aeropropulsive performance
was not the focus of this study, the external expansion-

ramp surface must be designed with care so that vehi-

cle performance does not suffer as a trade-off for

nozzle internal performance improvements. The aero-

propulsive performance is degraded by boattail drag
when low pressure, from either accelerated or sepa-

rated external flow, acts on an aft-facing surface such

as the cowl. For this translating-throat SERN concept,

boattail drag may result from large boattail angles

required to divert the flow internally at low and inter-
mediate Mach numbers.

This publication discusses an experimental and

computational investigation of the translating-throat

SERN concept. The experimental study was
conducted in the Langley Jet Exit Test Facility. A

sketch of the experimental model representing the

translating-throat SERN is shown in figure 3. Three

nozzles designed for high performance at low

(door 1), intermediate (door 2), and high (door3)

Mach number ranges were investigated. Two expan-

sion-ramp surfaces, one concave and one convex,
were tested for each nozzle to determine which geom-
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gravitational constant, lg _- 32.174 ft/sec 2

height at nozzle exit (fig. 8(a)), in.

height at geometric minimum area

(fig. 8(a)), in.

turbulent kinetic energy, Pa

reference length of nozzle assembly

(fig. 8(a)), 16.9 in.

length of cowl (fig. 8(a)), in.

axial length of ramp from cowl exit to

ramp trailing edge (fig. 8(a)), in.

free-stream Mach number

unit normal vector, n 1, n 2, n 3

Pt, j

nozzle pressure ratio, p-----_

design nozzle pressure ratio based on
external expansion ratio

design nozzle pressure ratio based on

internal expansion ratio

pressure orifice number (fig. 9)

ramp static pressure, psi

ambient pressure, psi
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average jet total temperature, °R

velocity vector

•velocity component in x direction

ideal weight-flow rate (eq. (3)), lbf/sec

measured weight-flow rate, lbf/sec

axial orifice location (fig. 9), in.

axial location of geometric throat from

nozzle connect station (fig. 8(a)), in.

spanwise orifice location (fig. 9), in.

law-of-the-wall coordinate,

angle of attack, deg

ratio of specific heats, 1.3997 for air

resultant pitch thrust-vector angle

(eq. (2)), deg

turbulent energy dissipation

estimated ramp angle (fig. 8(a)), deg

laminar viscosity

turbulent viscosity

local laminar viscosity at wall

density, slug/ft 3

standard deviation (table 2)



r

Subscripts:

ext

int

W

Iwall shear stress, g_nn
W

initial ramp angle at throat (fig. 8(b)), deg

external

internal

wall

Abbreviations:

AB afterburning

CD convergent-divergent

CFD computational fluid dynamics

ESP electronically scanned pressure

MS model station, in.

RANS Reynolds averaged Navier-Stokes

SERN single-expansion-ramp nozzle

2D two-dimensional

3D three-dimensional

Apparatus and Procedures

Test Facility

The experimental study was conducted in the

Langley Jet Exit Test Facility (JETF). This facility is
used to test the internal performance of nozzles by

simulating propulsion flows at static (wind-off) condi-

tions. The JETF test apparatus consists of a propulsion

simulation system, two independently controllable air

supply systems, and a data acquisition room. The air
systems use the same clean, dry air supply used in the

Langley 16-Foot Transonic Tunnel, and the same
valves, filters, and heat exchanger are used to provide

air at a constant total temperature near 530°R. The

model is mounted on the propulsion simulation system

in a soundproof room with an air exhaust collector

duct downstream of the jet.

Propulsion Simulation System

The translating-throat SERN model was tested on

a dual-flow, single-engine, propulsion simulation sys-

tem. A photograph (looking upstream) of the high
Mach number nozzle mounted on the propulsion sys-

tem in the Langley Jet Exit Test Facility is shown in

figure 4, and a sketch (side view) of the propulsion

system attached to a structural cart is shown in fig-

ure 5. Independently controlled primary and second-

ary flow systems provided pressurized air to isolated

plenum chambers on the propulsion system through

two pairs of semirigid, thin-walled (0.021-in. wall

thickness), 1-in-diameter, S-shaped, stainless steel

tubes (S-tubes). These tubes were designed to mini-

mize balance tares caused by flexure of the S-tubes as

air pressure is increased or by the transfer of axial
momentum as air is transferred from the nonmetric to

the metric part (supported by the force balance) of the

system. This design provides repeatable force and
moment tares so that the final data reflect only forces

and moments produced by the nozzle. The primary

and secondary air systems can be used separately or
combined for dual-flow operation. The two indepen-

dent flow streams each passes through a multiple criti-

cal venturi system (ref. 12) where the flow rate of each
stream is measured to within a 0.1-percent measure-

ment uncertainty. For the current investigation, only

the primary air system was used.

The air supplied to the propulsion system is dis-

charged radially from the primary plenum into an

annular low-pressure duct (on the model centerline)

through eight equally spaced sonic nozzles. The air-

flow then passes over an aerodynamic balance fairing

and through an axisymmetric choke plate (located just
downstream of MS 14.75), that provides a pressure

drop to ensure a uniform flow field. Downstream of
the choke plate, the air passes through the axisymmet-

ric primary instrumentation section at MS 17.75 and

then through the circular-to-rectangular transition sec-
tion at MS 24.25. A second choke plate at MS 30.25 is

located downstream of the transition section to ensure

a uniform flow field in the SERN instrumentation sec-

tion. The airflow enters the SERN at MS 36.25 and is



thenexhaustedto atmosphericconditionsin atestbay
with louveredceilingventstochanneltheflowoutside
thefacility. A sketchof theinstallationof a typical
translating-throatSERNonthepropulsionsimulation
systemisshownin figure6.

Experimental Model

Each nozzle configuration included a ramp assem-

bly, a ramp insert, a cowl, and two sidewalls. A photo-

graph of the model hardware is shown in figure 7. The

geometric parameter and the design nozzle pressure

ratio NPR o of each nozzle are listed in table 1, and
each geometric parameter is illustrated in figure 8(a).

Three cowl pieces of different lengths were used to

simulate changing the throat location of the

translating-throat SERN concept. The throat locations,

door 1, door 2, and door 3, provided three expansion

ratios for the subsonic-transonic (low Mach number)

portion, the low supersonic (intermediate Mach num-

ber) portion, and the high supersonic (high Mach num-

ber) portion of the flight envelope, respectively. Two

expansion-ramp surfaces, one concave and one con-

vex, were tested at each throat location by interchang-

ing ramp inserts.

The ramp assembly was common for all nozzles

and was 16.9 in. long. Each ramp insert began at

x = 4.6 in. and was 10.88 in. long. The nozzles had a

rectangular cross section with a nominal throat area of

2 in 2 and a width of 5 in. The overall expansion angle

Or and initial expansion angle ¢r are listed in table 1.

The overall expansion angle is defined as the angle

between a horizontal line drawn from the ramp at the

throat location and a segment drawn from the throat

location to the trailing edge of the ramp (fig. 8(a)). The

initial expansion angle is defined for the ramp geome-

try in the immediate vicinity of the throat as the angle

between a horizontal line drawn from the ramp at the

throat location and the local ramp surface as illustrated

in figure 8(b).

Instrumentation

A six-component strain-gauge balance located on

the centerline of the propulsion simulation system was

used to measure the forces and moments acting on the

model. This balance measures up to :t:800 lbf of nor-

mal force, :t:1200 lbf of axial force, and +12 000 in-lbf

of pitching moment. Negligible measurements were

expected from side force, rolling moment, and yawing

moment because of model symmetry.

A calibrated multiple critical venturi (ref. 12),

located upstream of the S-tubes, was used to deter-

mine the weight-flow rate of the high-pressure air sup-

plied to the test nozzle. One total temperature and

three static pressure measurements taken upstream of

the venturi and one static pressure measurement taken
downstream of the venturi were used in the calculation

of weight-flow rate. Pressures were measured with

2000-psia transducers, and the temperature was mea-
sured with a platinum resistance thermometer.

In the primary instrumentation section, jet total

pressure was measured with a nine-probe rake aligned

along a diagonal, and jet total temperature was mea-

sured with two thermocouples. In the SERN instru-

mentation section, jet total pressure was measured

with two five-probe rakes that were aligned vertically,

and jet total temperature was measured with one ther-

mocouple located at the same model station as the

probe rakes. Because of the expected pressures in the

instrumentation section, 250-psid transducers were

used to obtain the most accurate total pressure mea-
surements. The test nozzles were connected to the

SERN's instrumentation section at MS 36.25 (desig-
nated x = 0). Twenty-nine static pressure orifices were

located along the upper ramp surface of each configu-

ration. The geometric locations and coordinates of the

static pressure orifices are shown in figure 9. A rack-

mounted, 250-psi, electronically scanned pressure

(ESP) module was used to measure static pressures

along the expansion ramp.

The estimate of balance accuracy is shown in

engineering units and as a percent of full scale in
table 2. The estimated accuracies of gauge transduc-

ers, thermocouples, and the ESP module are listed in
table 3.

Focusing Schlieren Flow Visualization

The optical specifications for the focusing

schlieren system used in this experiment were deter-

mined from the requirements defined in reference 13.

The visualization system, shown in figure 10, was

used to determine the density gradients along a 2D
field of view. The longitudinal field-of-view dimen-

sions were 13 by 17 in. with a 0.2-in. depth of sharp

6



focus.By monitoringthefield of viewfrom thedata
acquisitionroom, flow characteristics at specific data

points were selected and recorded with a still camera. Fi = WP_-_--- li_ _,Pa )
(1)

Paint-Oil Flow Visualization

Paint-oil flow visualization is helpful in determin-

ing 2D and 3D flow patterns along the nozzle surfaces
and is an excellent aid for interpreting pressure and

force data. The paint-oil flow mixture used in this

study was comprised of kerosene, linseed oil, dry

paint, and oil paint. A thick, heavy paint mixture was

necessary for capturing flow characteristics from

supersonic jet flows.

The procedure was initiated by setting the

required NPR from the data acquisition room. Once a

steady-state flow condition was reached, a supply
valve for the system was closed to stop the airflow and

allow the paint-oil mixture to be applied to the expan-

sion ramp of the nozzle. With the paint mixture

applied, the supply valve was opened and the selected
flow condition was achieved within seconds. This pro-

cess was established so that minimal start-up flow

characteristics would be present in the flow patterns.
The selected flow condition was held for approxi-

mately 20 sec to allow the paint to dry and to record
data at the selected flow condition.

Data Reduction

Each data point was generated from the average of

50 samples of data recorded at a rate of 10 samples/
sec. The data were further reduced and corrected

according to the data reduction procedures presented
in reference 14. Data from all instrumentation systems

were recorded simultaneously. Three basic internal

performance parameters were used in"the discussion of
results: axial thrust ratio Fa/F i, resultant pitch thrust-

vector angle _p, and discharge coefficient C d.

Axial thrust ratio, which is a measure of nozzle

thrust efficiency, is defined as the ratio of measured

axial force along the body axis to ideal thrust. The
measured axial force along the body axis is used to

compute the axial thrust ratio FA/F i. Ideal thrust is

calculated by assuming one-dimensional isentropic

expansion from the stagnation conditions in the instru-
mentation section as follows:

The resultant thrust ratio is the ratio of gross thrust

to ideal thrust. Gross thrust is determined by calculat-

ing the square root of the sum of the squares of mea-

sured normal, side, and axial forces. The axial thrust

ratio is examined in this investigation because it
accounts for losses that result from flow being vec-

tored away from the axial direction, and the resultant
thrust ratio does not. The axial and resultant thrust

ratios are equivalent when the jet-exhaust flow is

unvectored and the resultant pitch thrust-vector angle

_p is zero. Nonzero values of _p occur when the flow
is vectored away from the axial centerline. The result-

ant pitch thrust-vector angle is determined as follows:

-1 FN
8 = tan -- (2)
P F A

Large normal force variations usually result in nonlin-

ear variations of 8p as a function of NPR. The varia-
tions in normal force also correspond to significant

pitching moments that increase the trim requirements
of SERN.

The discharge coefficient Cd is the ratio of the
measured weight-flow rate to the ideal weight-flow

rate; values less than 1.0 are expected. Ideal weight

flow is calculated by assuming isentrop_c choked flow

in a convergent nozzle as follows:

Atet, j ( 2-'_-')(T+I)I2(Y-1)('_+I} _/g _Wi=
(3)

Ideal weight flow is a function of total pressure, total
temperature, and nozzle throat area. Weight-flow
losses are attributed to viscous and vena contracta

effects (ref. 15) at the throat of the nozzle. The vena
contracta effect occurs when inertial forces cause the

flow near the wall to overshoot the convergent-

divergent transition at the throat of the nozzle. The

overexpansion of the flow at the throat can result in

shocks just downstream of the throat as the flow is

recompressed.



Forceandmomentmeasurementswerecorrected
for modelweighttares,isolatedbalance-component
interactions,jet-off installationtares,and installed
pressureandmomentumtaresdeterminedfrompretest
calibrations.Figure11showsatypicalhardwareset-
up for the balancecalibrationson the propulsion
simulationsystem.Balancecalibrationswere con-
ductedpriorto thetestto determinepropulsiontares
resultingfrombridgingthenonmetricandmetricpor-
tionsof thepropulsionsystemwiththeS-tubes.S-tube
pressurizationandaxial momentumtareswerethen
determinedby testingsingle-engineStratfordchoke
calibrationnozzleswith known performanceover
rangesof internalpressureandexternalforcesand
momentsexpectedduringthe actualexperiment.A
rangeof calibrationnozzleswastestedto determine
theeffectof nozzlethroatarea.Reference16describes
thebalancecalibrationprocessinmoredetail.

The accuracy of the balance and the pressure

transducers was used to estimate the uncertainty of the

calculated experimental performance quantities. The

individual uncertainty contributions to a performance

quantity were estimated with a first-order Taylor

series expansion. The final uncertainty of the perfor-

mance quantity was obtained from a root sum square
of the individual contributions. This method,
described in reference 17, was used to estimate the

uncertainty of axial thrust ratio, discharge coefficient,

and resultant pitch thrust-vector angle and is summa-

rized in the appendix.

Computational Code and Procedures

Navier-Stokes Equations

The PAB3D code solves the three-dimensional,

time-dependent, Reynolds averaged Navier-Stokes

(RANS) equations and uses one of several turbulence

models for closure of the RANS equations. The gov-

erning equations are solved in generalized coordinates

and in conservative form. The simplified, thin-layer

Navier-Stokes equations are implemented into

PAB3D in an effort to decrease computational require-

ments. This approximation neglects derivatives in the

viscous terms streamwise and parallel to the surface

because they are typically negligible in comparison
with the derivatives normal to the surface. Extensive

details of PAB3D are found in references 18 and 19.

The flow solver was written with three numerical

schemes: the flux vector-splitting scheme of Van Leer

(ref. 20), the flux difference-splitting scheme of Roe

(ref. 21), and a modified Roe scheme primarily used

for space marching solutions. Each method uses the

finite volume principle to balance the fluxes across

grid cells and the upwind biased scheme of Van Leer

or Roe to determine fluxes at the cell interfaces. Only

the inviscid terms of the flux vectors were split and

upwind differenced, whereas the diffusion terms of the

Navier-Stokes equations were centrally differenced.

Typical three-dimensional solutions are developed
with the Van Leer and Roe schemes. An iteration to

steady state in a 3D computational domain includes a

forward and backward relaxation sweep in the stream-
wise direction while implicitly updating each cross

plane. In a 2D computational domain, an index swap-

ping technique is used to speed convergence. Since the

cross plane contains only one cell in a 2D computa-

tional domain, the streamwise plane is swapped with

the cross plane to eliminate the forward and backward

relaxation sweep and to obtain a fully implicit domain.

This procedure typically increases the rate of conver-

gence and decreases the computational space and time

required to obtain a converged solution.

Turbulence Model

Turbulence modeling is required to predict accu-

rate solutions for many flow fields. The PAB3D code

can perform several turbulence simulations by imple-

menting either an algebraic or a linear or nonlinear,
two-equation turbulence model. An algebraic, two-

layer Baldwin-Lomax model is accurate for simple

viscous flows because the turbulent viscosity I.tT is
determined by a local function. A two-equation k-e
model with second-order closure is used to model

more complex viscous flow features such as shear lay-

ers and regions of separated flow. A second equation

is used to solve for the turbulent length scale in addi-

tion to the equation for turbulent kinetic energy k.

Because the k-e model has a singularity at solid sur-

faces, either a damping function or a wall function

must be implemented to adjust the turbulent viscosity

Ixr near these surfaces. The grid in the boundary layer
at wall surfaces must be well-defined with a law-of-

the-wall coordinate y+ of approximately 2 for adequate

modeling of the boundary layer flow (ref. 19).
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Based on past experience with the PAB3D code

(ref. 19) and the expectation of separated flow regions

in the present solutions, a two-equation k-E turbulence
model was chosen for solving the internal nozzle flow

and jet plume development in this investigation. The k

and E Iransport equations were written in conservative
form and were solved uncoupled from the Navier-

Stokes equations to decrease computational require-
ments. A modified Jones and Launder form (ref. 22) of

the damping functionfla was utilized to treat the singu-
larity at the wall because separated flow regions along

the expansion ramp were expected at overexpanded

conditions. A high Reynolds number model with no

damping function was implemented in the free-stream
blocks.

Performance Calculations

A performance package (ref. 23) is included in the

PAB3D code to aid in determining solution conver-

gence and to calculate nozzle or aerodynamic perfor-

mance parameters. Quantities such as lift, drag, thrust,
moments, heat transfer, and skin friction may be com-

puted for many complex geometric configurations and
multistream flows. A small control file allows the user

to define the control volume or volumes of interest.

The momentum theorem is applied to the user-
defined control volume to determine the momentum

and pressure forces on the model. The total body force
vector F is defined as

F = 5_[pU( U. N ) + (p - poo)N]AA + Ffric (4)

where AA is the cell face area and N is the cell face

unit vector. To determine a cell solid surface static

pressure, the cell-centered static pressure is interpo-
lated to the surface where the velocity is assumed to be

zero. As a solution converges, U.N goes to zero at
solid surfaces.

The skin friction force Ffric is calculated with only

the velocity gradients normal to the nozzle surface

contributing to the velocity term of the viscous stress

tensor. A two-point difference is used to determine the

velocity gradients, with one zero-magnitude velocity
vector at the surface and another at the cell center.

Sutherland's formula (ref. 24) is used to calculate the

laminar viscosity at the surface. The static temperature

at a local cell center is extrapolated to the surface, and

a reference viscosity and temperature condition are

used. Momentum and pressure forces are calculated at
user-defined intervals so that performance quantities

may be monitored throughout the development of a
solution.

Computational Grid

The computational domain for PAB3D consists of

a general multiblock grid topology with multiple-to-
one or arbitrary, conservative patching between the

block interfaces, which is necessary for modeling

complex configurations. An algebraic grid generator is
used in this investigation to generate two computa-

tional multiblock grids that represent the low and high

Mach number experimental nozzles with the concave

expansion-ramp surface. Both grids are two-
dimensional and are described in more detail in the

following sections.

Low Mach Number Nozzle Grid Definition

The complete computational domain of the con-

cave ramp, low Mach number nozzle and a close-up

view of the grid density at the nozzle throat and expan-

sion ramp are shown in figure 12. The internal duct
and the expansion ramp are defined with the design
coordinates of the nozzle model hardware. The grid

block that defines the throat and external expansion

ramp has dimensions of 161 by 85 (streamwise by nor-
mal). The first cell in the boundary layer along the

inside of the nozzle and along the ramp is defined for

y+ < 2.5 at the coarse mesh level to ensure the devel-

opment of turbulence in the solutions. The computa-
tional domain consists of 16 blocks. The far-field

boundary is located 106 throat heights (12.6 ramp

lengths) downstream of the nozzle exit, the lower lat-

eral boundary is located 88 throat heights (10.6 ramp

lengths) below the expansion ramp, and the upper lat-
eral boundary is located 52 throat heights (6.2 ramp

lengths) above the expansion ramp.

High Mach Number Nozzle Grid Definition

The complete computational domain for the con-

cave ramp, high Mach number nozzle and a close-up

view of the grid density at the nozzle throat and expan-

sion ramp are shown in figure 13. The blocks that
defined the throat region and the external expansion

ramp have dimensions of 161 by 85. As for the



computationaldomainof the low Machnumbernoz-
zle, thefirst cell in theboundarylayeris definedfor
y+< 2.5 at the coarse mesh level. The computational

domain consists of 20 blocks. The far-field boundary

is located 206 throat heights (8.8 ramp lengths) down-

stream of the nozzle exit and the upper and lower lat-

eral boundaries are located 180 throat heights

(7.75 ramp lengths) away from the expansion ramp.

Grid Mesh Sequencing

A mesh sequencing procedure was utilized to

accelerate grid convergence and to determine the grid

sensitivity of the performance quantities and of the
normalized static pressure distributions on the

expansion-ramp surface. The solution was initially
developed on a coarse mesh that contained one half

the grid points of the fine mesh in the streamwise and

cross-stream directions. Once the solution converged

on the coarse mesh, it was interpolated to a medium

mesh that included one quarter more of the grid points

in both directions. After convergence was obtained on
the medium mesh, the solution was refined and con-

verged on the fine mesh. The grid sensitivity results

are shown in the section "Experimental and Computa-

tional Comparisons."

Boundary Conditions

The code offers five types of boundary conditions

that may be applied to different regions of the compu-

tational domain. Riemann invariants along characteris-
tics were used for the lateral free stream and free-

stream inflow boundaries. Fixed total temperature and

total pressure were used for the nozzle inflow bound-

ary. At the far-field outflow boundary, a constant

static pressure for subsonic flow was used because the
simulations were calculated with a static free stream.

The boundary condition implemented on solid sur-

faces was a no-slip adiabatic wall condition used for
viscous solutions.

Experimental and Computational

Approach

The experimental nozzles were tested through a

range of NPR from 2 to 13. The experimental test

range of NPR was typical of the operating conditions
for the low Mach number nozzles. The intermediate

and high Mach number nozzles were highly overex-
panded at all test conditions.

A 2D domain was used for the computational

investigation. This approach to modeling the SERN

geometry provided information about the flow charac-

teristics along the centerline and a good estimate of

performance quantities near the design condition when

minimal separation occurred. At highly overexpanded
conditions, 3D flow separation (observed in the exper-

iment) would not be modeled with a 2D domain, and

CFD would overpredict thrust efficiency.

CFD was used to simulate the concave ramp, low
Mach number nozzle at NPR's of 5, 9, and 13 with an

approximately static free stream (M = 0.05). To aid the
stability of the code, a small, convective free-stream

Mach number is usually implemented when simulat-

ing static conditions. Two solutions at highly overex-

panded conditions (NPR = 10 and 13) were computed
for the concave ramp, high Mach number nozzle in an

effort to compare internal performance with the exper-

imental results. Qualitative solutions were obtained,

but the simulations were not fully converged because

of the large region of separated flow along the ramp at

overexpanded conditions. A higher external free

stream (M = 0.1) was used for the high Mach number
nozzle in an effort to obtain stable solutions at the

highly overexpanded conditions, which should have

minimal effect on the qualitative comparisons. The

high Mach number nozzle was also simulated at the

on-design condition (NPR D = 102). Predicted perfor-

mance quantities were compared with the experimen-

tal data, and when applicable, predicted flow

characteristics were compared with paint-oil flow and
focusing schlieren flow visualization.

A grid mesh and solution convergence study was

conducted for each computational simulation. The

grid mesh sequencing scheme was used to estimate the

dependence of the solution on the mesh density of the
computational domain. A solution performance and

residual history were used to monitor convergence as

the solution developed at each grid level. The main

convergence criteria were to obtain variations in axial

thrust ratio and discharge coefficients of less than

0.001 over 1000 iterations. Secondary convergence
criteria were to obtain a drop in the residual of 2 orders

of magnitude.
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Discussion of Results

Single-expansion-ramp nozzles may be internally

convergent or internally convergent-divergent, which

affects performance because expansion of the exhaust

flow either occurs extemally or internally and exter-

nally, respectively. For an internally CD SERN, the

internal expansion is contained by the nozzle surface

upstream of the cowl trailing edge and is defined by

the internal expansion ratio (A e/At)int; the extemal

expansion occurs downstream of the cowl trailing
edge between a free (ambient-exhaust) boundary and

the upper ramp and is defined by the external expan-

sion ratio (A e/At)ex t. Internally CD SERN's generally

exhibit two peaks in thrust performance over a broad
range of NPR because the exhaust flow expansion pro-

cess occurs both internally and externally (ref. 11).

Because the external exhaust flow expansion has a

free (ambient-exhaust) boundary, aeropropulsive per-
formance for SERN is a function of NPR, M, and tx. In

this static investigation, the internal performance

parameters depend on NPR only. Generally, _Sp= 0 °
for a well-designed SERN operating at the design con-

dition because the thrust would have been designed to

align in the axial direction. At off-design conditions,

large nonlinear values of _ip with respect to NPR occur
because the expansion-ramp surface has no opposing

surface to balance the forces of the expanding flow.

The unopposed surface can inhibit the performance of

SERN's because the requirement to trim aircraft pitch-

ing moments can result in large drag penalties. Addi-

tionally, a reduction in body axis thrust occurs at

nonzero values of _ip.

Effect of Throat Location

The effect of throat location on internal perfor-

mance of the concave ramp nozzles is shown in

figure 14. All three concave ramp nozzle configura-
tions had similar thrust ratio trends. Each nozzle con-

figuration exhibited two peaks in axial thrust ratio and

a fairly constant axial thrust ratio for NPR > 8.

number nozzle with NPR D = 42.2 was highly overex-

panded in the test range of NPR. Not surprisingly,

axial thrust ratio for the high Mach number nozzle was
the lowest of the three in the same NPR range

because it was operating farthest from its design

point, NPR D = 102.4. The resultant penalties in thrust

noted previously result from overexpansion losses

when the nozzles operate at off-design conditions.

Separation along the ramp was more significant as the

length of the ramp increased from 4.2 in. for the low
Mach number nozzle to 11.6 in. for the high Mach

number nozzle. At wind-on (M > 0) highly overex-

panded conditions, the thrust penalties would most

likely be more severe because the large separated

region along the expansion ramp would generally

result in higher afterbody pressure drag. To mitigate

thrust penalties at wind-on conditions, care must be

taken when designing the external cowl to ensure that

the boattail angle promotes attached expanding flow

(ref. 7).

The intermediate and high Mach number nozzles

(higher design NPR's) had larger magnitudes of _p
than the low Mach number nozzle at NPR = 9. Trans-

lating the throat from a high to a low expansion ratio

would provide a decrease in vector angle of approxi-

mately 7 ° at NPR = 9. This result illustrates the benefit
of translating the throat of the nozzle to achieve a

more optimum expansion ratio for a given set of con-

ditions, that is, a smaller expansion ratio at takeoff and

subsonic flight conditions to eliminate unwanted pitch

vectoring and to reduce vehicle trim requirements.

The effect of throat location on the performance of

the convex ramp nozzles is shown in figure 15. Only

general comparisons are made among the convex noz-
zles because model fabrication produced geometric
differences at the throat. The intermediate Mach num-

ber nozzle had a small internal divergence, as shown

in figure 8(b). The low and high Mach number nozzles

had a positive initial expansion angle that appeared to

vector the flow away from the expansion ramp.

The low Mach number nozzle with a design noz-

zle pressure ratio of 9 had the highest axial thrust ratio

of the concave ramp configurations over the test range
of NPR. The axial thrust ratio was between 0.5 and

4 percent lower for the intermediate Mach number

nozzle operating in the same range of NPR. This

behavior was expected because the intermediate Mach

The intermediate Mach number nozzle exhibited a

higher axial thrust ratio than the low Mach number

nozzle for NPR > 3.5, even though it was overex-

panded throughout the test NPR range. The low Mach

number nozzle had the highest axial thrust ratios for

NPR < 3.5, probably because of the combination of an

internally convergent geometry and a short external
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expansionramp.EventhoughthehighMachnumber
nozzlealso hadan internallyconvergentgeometry,
thrustratiowaslowerthanfor thelow Machnumber
nozzleatNPR<3.5,mostlikelycausedbyoverexpan-
sion lossesthat occurredalongthe longerexternal
expansionramp.

Theconvexramp,lowMachnumbernozzlehada
resultantpitchthrust-vectorangle8pof 18.7° nearthe
designpointof NPR= 10 insteadof 0, aswouldbe
expectedfrom awell-designedSERNoperatingnear
thedesignpoint.Theconvexramp,highMachnumber
nozzlehadalargepositiveincreasein _pof 14.5°from
NPR= 3.75to4.At thischangeinNPR,theflowdra-
maticallyseparatedfromtheupperramp surface and

remained separated through NPR = 13, as illustrated in

figure 16. The values and trend of _ip for the convex
ramp, intermediate Mach number nozzle were similar

to those of the concave nozzles, all of which had nega-
tive initial expansion angles at the throat.

Effect of Ramp Geometry

The effect of ramp geometry on performance is

shown in figures 17 to 19. The concave expansion

ramp provided a better expansion surface for the flow;

this resulted in much higher thrust ratios and smaller

values of _p. All three nozzles with convex ramp sur-
faces had larger thrust ratios for NPR < 3, whereas the

first peak in thrust ratio for the concave ramp surface

nozzles occurred at NPR > 3. (See figs. 17 to 19.) This

result was expected because the convex ramp nozzles
had internal expansion ratios of 1.01 or less, such that

the nozzles basically had an internal geometry typical

of a convergent nozzle with an internal design point

NPR D of 1.89. All the concave ramp nozzles had an
internal expansion ratio greater than 1 with a slightly

larger internal design NPR than the convex ramp noz-

zles; this resulted in the slight delay of peak thrust

ratio until a higher NPR was reached. The low Mach

number nozzle at NPR D = 9 produced 6p = 0 ° with the
concave ramp surface because the thrust was aligned
in the axial direction, whereas the convex surface vec-

tored the thrust to produce _p = 17.5 ° (fig. 17(b)).

Experimental and Computational

Comparisons

Low Mach Number Nozzle

Predicted and experimentally measured internal

nozzle performance parameters, including axial thrust

ratio, resultant pitch thrust-vector angle, and discharge
coefficient, are shown in figures 20 and 21. Axial

thrust ratio was predicted within 1.5 percent of the

experimental data (fig. 20(a)). Overprediction of axial

thrust ratio was expected from the CFD analysis

because the highly complex 3D flow observed along

the expansion ramp in the experiment and in previous

studies (refs. 25 to 28) was simulated with a 2D com-

putational domain. The 2D simulations accurately rep-

resent flow along the centerline of the nozzle, but the

predicted performance quantities were calculated by

assuming that the centerline flow solution was con-
stant over the 5-in. width of the nozzle. Therefore, the

3D separation losses along the expansion ramp that

were present in the experiment were not modeled with

the 2D computational domain.

In general, PAB3D predicted both the level and

the trend of resultant pitch thrust-vector angle _p as a

functioia of NPR (fig. 20(b)). The calculation of 6p
from integrated pressures along the expansion ramp

did not include the lateral variation of separated flow

along the ramp because the computational domain was

2D. However, the absolute magnitudes of _Sp at
selected NPR's were predicted within +__2.5° of the

experimental data.

Predicted discharge coefficient and experimental

discharge coefficient are shown as a function of NPR

in figure 21. Experimental results indicate an increas-

ing Cd up to 1.04 at NPR = 13. An unrealistic value of

Cd > 1.0 indicates that the nominal throat area of the

nozzle used for the experimental calculation of Cd was
smaller than the actual throat area of the nozzle. Nor-

mally, Cd would level off to a constant value after the

flow fully expanded internally at NPR = 1.89 (refs. 8

to 11). The increasing trend of experimental Ca indi-

cates that the effective throat area was increasing with
NPR and was greater than the nominal minimum area

(used in the calculation of ideal weight flow in the

experiment) when Cd > 1. An area greater than the
nominal minimum area might occur from a skewed

throat that is not aligned with the geometric minimum

area, whereas the increasing area may result from the

shifting of the skewed throat due to nonuniform

boundary layer flow upstream of the geometric mini-

mum area. It could also be due to "oil canning" of the
cantilevered cowl. Unlike the nominal throat area used

for the experimental calculation of Cd, the minimum

area of the grid was used in the predicted solution,

which ensures that Cd is less than 1. The decrease in
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nozzleefficiencyin passingweightflow as NPR

increased from 9 to 13 may have resulted from exces-

sive boundary layer thickness and nonuniform flow at
the throat.

As shown in figure 22, the predicted normalized

static pressure distribution along the centerline of the

ramp was generally very good at NPR = 13. A sketch

of the nozzle internal geometry is included in figure 22

to aid the reader in identifying geometric characteris-

tics that impact flow characteristics. The throat of the

nozzle is located near x/L = 0.75. The flow upstream
of the throat is subsonic; thus, a decrease in

static pressure upstream of x/L = 0.28 occurs as
the area decreases. In the constant area section

between x/L = 0.28 and 0.7, the predicted and experi-

mental pressures remain approximately constant. The

code predicts an overexpansion and compression at

the throat, as expected from the large turning angle

required at the throat discontinuity. A weak shock and

an apparent induced flow separation are present near
x/L = 0.86. The weak shock was not detected in the

experimental data because of the limited number of

orifices along the expansion ramp.

The overprediction in pressures between

x/L = 0.28 and 0.7 coincides directly with the location

of the ramp insert. The experimental pressure in this

constant area region, P/Pt,j = 0.85, corresponds to
M = 0.487. The predicted pressure in this region,

P/Pt,j = 0.89, corresponds to M = 0.411. For the flow to
have a lower predicted Mach number in the subsonic

region upstream of the throat, the effective flow area
in the fabricated nozzle must have been smaller than

that of the nozzle design. The change of effective flow

area could result from the model assembly and a thin-

ner predicted boundary layer in the computational
solution. The difference between predicted and experi-

mental pressures correlates to a 13-percent change in
effective flow area, which would result from a change

in duct height of approximately 0.065 in. Because this

pressure discrepancy occurred upstream of the nozzle

choke location at the throat, it is not expected to have

affected the performance or the flow characteristics

along the expansion ramp.

The concave ramp, low Mach number nozzle with

the near sidewall removed (fig. 23(a)) was included to

more easily identify geometric features in the follow-

ing discussion. Qualitative comparisons between the

experimental density gradients along the centerline

and the predicted Mach contours at NPR = 13 can be
made from figures 23(b) and 24. The thick shear layer,

the oblique shock system internal to the plume, and

the shock-induced separation from the external expan-

sion ramp are evident in both figures. The paint-oil

flow pattern along the ramp at NPR = 13 is shown in

figure 25. The thick line, normal to the flow direction,

provided indication of shock-induced separation
located near x/L = 0.87. The flow up to the separation

line is essentially 2D, whereas the 3D pattern down-

stream of the separation line provides evidence of two

symmetric vortex trails. Three-dimensional separation
of this nature is not accounted for in the 2D CFD

calculations.

• A grid sensitivity study for the solution developed
at NPR = 13 is included as a representative example of

the evaluation of solution dependency on grid density

completed for each computation. Performance quanti-

fies at each grid density level are shown in figure 26.

The discharge coefficient changed 0.7 percent from
the coarse to medium mesh refinement and was negli-

gibly different at the fine mesh refinement. The axial

thrust ratio changed 0.24 percent at the medium mesh

refinement and 0.29 percent at the fine mesh refine-

ment. The minimal changes in performance quantities

among the various mesh densities indicate that the
solution is minimally dependent on the number of grid

points used to develop the solution.

The solution convergence history for the concave

ramp, low Mach number nozzle simulation at

NPR = 13 is shown in figure 27. The main conver-

gence criteria, variations less than 0.001 in F A/F i and

Ca over 1000 iterations, were met. The residual

dropped 1.5 orders of magnitude on the coarse mesh
but remained nearly constant on the medium and the

fine meshes; this may be a consequence of the region

of separated flow along the expansion ramp. Because
the solution residual was based on all the blocks in the

computational domain, regions of separated flow in

one or more blocks may mask a decreasing residual in
the rest of the blocks. This outcome has been observed

in a previous study of a SERN with separated flow

along the upper expansion-ramp surface (ref. 29). In
such cases, the strict convergence criteria on perfor-

mance parameters must be met.

High Maeh Number Nozzle

The concave ramp, high Mach number nozzle

shown in figure 28(a) had a design point NPR D of
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102.4;thus,thenozzlewasoverexpandedatNPR= 10
and 13.As a result,substantial3D flow separation
occurredalongthe rampat all test conditions.In
figure28(b),photographsof paint-oil flow patterns
alongtherampanddens!tygradientsalongthecenter-
line at NPR= 13give goodindicationof separated
flow.Thethicklinenearx/L = 0.44 provided evidence

of shock-induced separation upstream of the geomet-

ric discontinuity in the ramp. In figure 28(c), the

oblique shock system internal to the plume is detected

as thin white lines in the focusing schlieren photo-

graph. Flow entrainment of ambient air produced two

vortices whose trails appeared along the ramp down-
stream of the shock line and met near x/L = 0.65. The

flow patterns observed along the ramp resembled

those from wedge nozzles (ref. 30) and other computa-

tional investigations of SERN's (refs. 25 to 27 and
29). However, the conditions simulated at NPR = 10

and 13 herein were significantly more overexpanded.
The shock location and vortex trails observed in refer-

ence 30 along wedge nozzles at overexpanded condi-
tions were similar to those found in the current work

because the geometry of the wedge nozzle, with a

symmetric upper and lower external expansion ramp,

is similar to that of a SERN. As expected, the 3D flow

detected along the ramp in this experiment was not

modeled with the 2D grid used in the computational

study, and as with most computational codes, PAB3D

had difficulty predicting solutions that contained such

massive areas of unsteady flow separation.

The predicted and experimental normalized static

pressure distributions are shown in figure 29 as a
function of normalized axial location. A sketch of the

nozzle geometry is included to aid the reader in

identifying geometric characteristics that impact

flow characteristics. The static pressure ratios up

through the first discontinuity in the expansion-ramp
geometry were accurately predicted. The code pre-

dicted the overexpansion and compression at the

throat, x/L = 0.3, which were not detected in the exper-
imental data because of the limited number of orifices.

Large oscillations in predicted static pressure ratios

were observed downstream of the shock, along with

separated flow over the expansion ramp, for several

thousand iterations. An instability appeared to propa-

gate downstream of the separation line with little

dampening. Insufficient evidence exists to verify

whether this instability was numerical or truly physi-

cal. Because no cross-stream component is present in

a 2D simulation, the oscillations may have resulted
from the lack of 3D relief.

At NPR = 13, the density gradients along the cen-

terline (fig. 28(c)) and the predicted Mach contours up

to the shock-induced separation line after 34 054 itera-

tions (fig. 30) were qualitatively similar. At this over-

expanded condition, a shock was detected as a line

located at x/L = 0.44 in the paint-oil flow (fig. 28(b)),

as a thin white line in the density gradients along the

centerline (fig. 28(c)), and as condensed Mach con-

tours emanating from the discontinuity near x/L = 0.46
(fig. 30). The dashed line that extends from the cowl to

the upper ramp in figure 30 represents the sidewall

(which hides a portion of the flow in fig. 28(c)). The

expansion wave from the upper ramp discontinuity at
x/L = 0.306, the reflection on the free boundary, and

the oblique shock system were detected in both
figures 28(c) and 30.

Computational Results at NPR = 102

The concave ramp, high Mach number nozzle was

also simulated at the design point NPR o of 102. The

predicted axial thrust ratio FA/F i was 0.886 and the

resultant thrust ratio F r/F i was 0.906. The predicted

resultant pitch thrust-vector angle of 8p = 12.08 ° corre-
sponded to the 2-percent difference between the axial

and resultant thrust ratios. The predicted discharge

coefficient was Cd = 0.939.

The solution performance convergence history at

NPR = 102 is shown in figure 31. The on-design com-

putation converged to a stable solution after only

3000 iterations compared with the far off-design com-

putation at NPR = 13 (fig. 27), which was not con-

verged after 34 054 iterations. The predicted Mach

contours at NPR = 102 are shown in figure 32. The

high-pressure air expanded approximately 60 ° around
the trailing edge of the cowl as a result of the underex-

panded conditions (p > Pa) at the cowl exit. Waves
from the overexpansion and compression at the throat

discontinuity and from the discontinuity in the expan-

sion-ramp geometry were predicted. The shear layer

was evident as a dense region of Mach contours. An

oblique shock originating near the trailing edge of the

ramp is predicted inside the shear layer, detected by

more tightly packed Mach contours. The lack of

separation along the expansion ramp resulted in quick
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convergence of a stable solution with negligible vari-

ance of the performance parameters.

The predicted normalized static pressure distribu-

tion at each grid density level, as a function of nondi-
mensional axial location, is shown in figure 33. A

sketch of the nozzle geometry is included in figure 33
to aid the reader in identifying geometric characteris-

tics that impact flow characteristics. The typical over-

expansion and compression of the flow at the throat

was predicted near x/L = 0.31. The pressure ratio dis-

tribution along the expansion ramp indicates that the
nozzle was not operating as expected at the design

condition because the pressure along the divergent

section did not continually expand to the ambient pres-

sure. For the design NPR of 102, the flow would be

expected to expand to a pressure ratio of 0.0098 and a

Mach number of 3.7 at the ramp trailing edge. The

flow was predicted to expand beyond ambient condi-

tions downstream of the discontinuity in the ramp sur-

face geometry at x/L = 0.46 and then recompress near
x//_, = 0.91. An oblique shock was predicted in the

Mach contours near the trailing edge of the ramp

(fig. 32). One might conclude that the nozzle was still

overexpanded at this condition and that the theoretical

NPR o = 102 is not correct. However, the large posi-

tive resultant pitch thrust-vector angle, the somewhat
lower axial thrust ratio, and the predicted shape of the

plume are usually associated with an underexpanded
nozzle. Therefore, the shock at the end of the expan-

sion ramp would have resulted from the slight change

in geometric slope of the ramp, from 10.96 ° to 7.58 °
near x/L = 0.91. The compression of supersonic flow

from this geometric reflex would result in an oblique

shock. The predicted pressure ratio upstream of the

shock at x/L = 0.91 corresponded to M -- 4.4. The
Mach number downstream of the shock was estimated

to be --4, and the shock wave angle was estimated to

be approximately 15.5 ° for a deflection angle of 3.38%

The predicted pressure ratio at the trailing edge of the

ramp corresponded to M -- 3.8.

The grid sensitivity study for the design case,

NPR D = 102, is shown in figures 33 and 34. Grid
refinement caused minimal variations in normalized

static pressure distributions along the expansion ramp

(fig. 33). Axial thrust ratio changed 0.3 percent from
the coarse to medium mesh refinement and a mere

0.04 percent at the fine mesh refinement (fig. 34). At
the medium and fine mesh refinements, the resultant

pitch thrust-vector angle changed 3.8 and 0.77 percent

and discharge coefficient changed 0.2 and 0.01 per-

cent, respectively. The minor changes in internal noz-

zle performance at the fine mesh refinement indicate

minimal dependency of the solution on grid mesh

density.

Concluding Remarks

The objective of this study was to analyze a nozzle

concept, intended to improve the off-design perfor-

mance of a single-expansion-ramp nozzle (SERN), at

low nozzle pressure ratios (NPR's). The capability of

translating the throat of the nozzle provides the SERN
with a variable expansion ratio to maximize internal

nozzle performance over a wide range of flight condi-
tions. Three throat locations were investigated to sim-

ulate the application at subsonic-transonic (low Mach

number nozzle), low supersonic (intermediate Mach

number nozzle), and high supersonic (high Mach

number nozzle) flight conditions. Two expansion-

ramp surfaces, one concave and one convex, were

investigated for each throat location at nozzle pressure

ratios up to 13. The low Mach number nozzle was

tested at typical operating conditions, whereas the

intermediate and high Mach number nozzles were

highly overexpanded at all test conditions. The

Reynolds averaged Navier-Stokes code PAB3D with a
k-E turbulence model was used to simulate the concave

ramp, low Mach number nozzle at NPR's of 5, 9, and
13 and to simulate the concave ramp, high Mach num-

ber nozzle at NPR's of 10, 13, and 102.

The experimental results indicate that the concave

ramp, low Mach number nozzle had the highest axial

thrust ratio over the test NPR range. This result is

important because it supports the concept of translat-

ing the throat of a SERN from a large expansion ratio

to a small expansion ratio in order to provide a more

optimum expansion at low operating conditions. Com-

putational solutions verified the axial thrust ratio per-
formance with predicted values within 1.5 percent of

experimental data. Additionally, a small value of

resultant pitch thrust-vector angle was obtained at the

design point (NPR D = 9) of the concave ramp, low
Mach number nozzle from both the experimental and

computational investigations. Translating the throat
from a high to a low expansion ratio provided a

decrease in vector angle of 7 ° at NPR = 9. This result

is important because less trim control would be
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requiredat NPR= 9. In general,thenozzleswith the
concaverampsurfaceoutperformedtheirconvexramp
surfacecounterparts.Theconvexrampsurfacewitha
positiveinitial expansionangleatthethroathindered
theexpansionof theplumealongtheexpansionramp
andincreasedtheresultantpitchthrust-vectorangle.

The quantitativeand qualitativecomparisons
betweenpredictedandexperimentaldataweregener-
ally verygood.Theplumeshearlayer,obliqueshock
system,andseparationfromthe externalexpansion
rampwere observedin both the densitygradients
alongthenozzlecenterlineandin thepredictedMach
contours. The flow remainedessentially two-
dimensionalup to theshock-inducedseparationline.
Theflow patterndownstreamof theshockwasrepre-
sentativeof acomplex,three-dimensionalplume.The
entrainmentof ambientaircreatedvorticalflow in the
separated,low-pressureregionalong the expansion
ramp.A two-dimensionalcomputationaldomainpro-

videdgoodpredictionof performancequantitiesand
of flow characteristicsnear on-designconditions
whereminimalseparationoccurredalongtheramp.
As a resultof a numericalor physicalinstability,
convergedsolutionsat far off-designconditions
(NPR=10and13)werenot obtainedfor the high
Mach numbernozzle.However,good qualitative
comparisonswereobtainedup to the shock-induced
separationline.

Futurehigh-speedaircraftwill requirehighoverall
performancethroughouta rangeof flight conditions.
Theinitial experimentalandcomputationalresultsof
the translating-throatSERNconceptindicatedsome
promising performancebenefits. Furthermore,a
SERNwithavariableexpansionratiowouldprovide
additionalperformancebenefitsof aSERNoverother
nozzlecandidates,suchaseaseof integrationwith the
airframe,potentialweight reductions,andpotential
dragreductions.
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Appendix

Uncertainty Analysis

An uncertainty analysis was conducted to deter-
mine the estimated uncertainty associated with axial

thrust ratio, discharge coefficient, and resultant pitch

thrust-vector angle for the comparison between com-

putational predicted values and experimental data.

(See figs. 20 and 21.) This uncertainty analysis was

implemented in a spreadsheet form for many of the
flow measurements and data reduction equations used

in the Langley Jet Exit Test Facility. A full description

of the uncertainty analysis is given in reference 17. To

determine the propagation of error of individual mea-

surements in a data reduction equation,

r = r(x 1,x 2..... x j) (A1)

the following uncertainty analysis expression was
utilized:

71. °.° ..1-

Or 271/2

(A2)

Or B
The quantity 3x 1 1 represents the uncertainty contri-

bution of the measurement x! to the data reduction

equation r. Each contribution is combined in a root

sum square to estimate the total uncertainty of the data

reduction equation. This analysis was conducted for

the low and high Mach number nozzles with the con-

cave expansion ramp; the estimated uncertainties are

included in tables 4 and 5. The spreadsheet was uti-

lized to estimate the uncertainties of NPR, Cd, FA/F i,

Fr/F i, and _Spand required the following inputs:

1. The operating conditions: NPR, Pa, Tt,j, and A t

2. The system setup, including the number of jet

total pressure measurements, the number of

thermocouples, the number of venturi static

pressure measurements, and the curve fit used

for weight flow

3. The individual instrument uncertainty as a per-

cent of reading for Tt,j, Pt,j, Pa, normal force 2_,
and axial force 2c
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Table1.NozzleConfigurationParameters

Nozzle x t, in. lc, in. lr, in. h t, in. h e, in. Or, deg Or, deg

Concave high
Machnumber 5.17 5.3 11.6 0.400 3.30 -13.9 -14.3

Convex high
Mach number 5.30 5.3 11.6 0.384 3.30 -14.6 1.8

Concave intermediate

Mach number 8.91 9 7.9 0.400 1.85 -10.3 -10.0

Convex intermediate

Mach number 8.91 9 7.9 0.400 1.85 -10.3 --4.8

Concave low

Mach number 12.64 12.7 4.2 0.400 0.73 --4.4 -5.4

Convex low

Mach number 12.70 12.7 4.2 0.385 0.73 -5.9 5.6

(me ]At)in t NPRo,int (Ae /At) ext

1.08

1.00

1.05

1.01

1.01

1.00

2.92

1.89

2.60

2.20

2.23

1.89

8.25

8.59

4.63

4.63

1.83

1.9

NPR D

102.4

109.1

42.2

42.2

9.0

9.9

Table 2. Balance Accuracy

Forces and moments 2_ 2_, percent of balance maximum

Normal

Axial

Pitch

Roll

Yaw

Side

1.52 lb

1.64 lb

25.69 in-lb

55.60 in-lb

22.44 in-lb

1.96 lb

0.19

0.14

0.21

5.56

0.19

0.25

Table 3. Uncertainty Estimates

Percent of reading

Jet total pressures, Pt,j ......................... _+0.68

Thermocouples, Tt,j ........................... _+0.37

P a .......................................... _+0.1

ESP, p ..................................... +0.25
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Table4.UncertaintyEstimateforConcaveRamp,LowMachNumberNozzle

Uncertainty estimate for--
NPR condition

NPR Cd FA IF i F r IF i _p, deg

2.017

3.004

4.005

4.999

9.010

13.002

0.005

0.007

0.009

0.012

0.021

0.031

0.003

0.003

0.003

0.003

0.003

0.003

0.025

0.014

0.009

0.002

0.002

0.002

0.025

0.014

0.009

0.002

0.002

0.002

1.058

0.573

0.379

0.284

0.140

0.008

Table 5. Uncertainty Estimate for Concave Ramp, High Mach Number Nozzle

NPR condition Uncertainty estimate for--

NPR C d Fa IF i F r/F i _p, deg

2

4.004

5.027

7.011

9.001

10.006

13.007

0.005

0.009

0.012

0.017

0.021

0.024

0.031

0.003

0.003

0.003

O.003

O.003

0.003

0.003

0.025

0.009

0.007

0.005

0.004

0.004

0.003

0.025

0.009

0,007

0.005

0.004

0.004

0.003

1.091

0.399

0.292

0.193

0.144

0.126

0.092
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_ERN
expansionramp--__\_._.

....... - "
I Inlet system __ _ust system i

Figure 1. Sketch of highly integrated high-speed vehicle.

Inlets
Turbofan engine-

Door 1
Door2

Ramjet/scramjet engine

Figure 2. Translating-throat SERN integrated into afterbody of high-speed vehicle.

Low Mach number geometry

___" Door 1

_ Door 3

Intermediate Mach number geometry

_ Door 3

High Mach number geometry

oor 1

__F_Door_"_Door 3 Door 2

Figure 3. Sketch of translating-throat SERN model.
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Figure4.HighMachnumbernozzlemountedon propulsion system in Langley Jet Exit Test Facility. Looking upstream.

Secondary

I
!

Structural support cart I

(removed for clarity) --_l
I..d

Secondary

SERN

Primary S-tubes Primary plenum

Figure 5. Sketch of propulsion system attached to structural support cart. Side view.
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SecondaryS-tube

PrimaryI

8equallys.p.acedsonic
nozzles

Primary S-tubes

Flow direction --

strain-gauge
balance

Secondary
S-tube

Aerodynamic balance fairing

Choke plate

r--Primary instrumentation
section

F Flanged adapter-Transition section

[ / _ Choke plate /

\,

Balance
moment center

MS MS MS MS
0.00 5.50 14.75 17.75 21.75 24.25 36.25

I
MS MS MS MS

30.25

SERN instrumentation section

Nozzle ramp assembly/-- Ramp insert

MS
53.15

Figure 6. Installation of typical translating-throat SERN nozzle on propulsion simulation system.

23



Figure 7. Ramp assembly, six ramp inserts, and three lower cowl pieces (sidewalls not shown).
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MS 36.25

(x = 0)

I Ramp assembly

x = 4.6

Xt

L = 16.9
Ramp insert

ht

Cowl

(a) Illustration of geometric parameters.

Internal divergence

I I

I i

Concave ramp , ,

_r < 0

I

I

Convex ramp

(b) Graphical representation of initial expansion angles at throat.

Figure 8. Description of general single expansion-ramp nozzle. Linear dimensions are in inches; angles are in degrees.
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Orifice x y Orifice x y
PI 0.95 0.00 P16 15.00 0.00
P2 1.95 0.00 P17 16.50 0.00
P3 2.95 0.00 P18 6.00 1.91
P4 3.94 0.00 P19 7.00 1.91
P5 5.00 0.00 P20 8.00 1.91
P6 6.00 0.00 P21 8.50 1.91
P7 7.00 0.00 P22 9.00 1.91
P8 8.00 0.00 P23 10.00 1.91
P9 8.50 0.00 P24 11.00 1.91
P10 9.00 0.00 P25 12.00 1.91
P1 ! 10.00 0.00 P26 13.00 1.91
P12 11.00 0.00 P27 14.00 1.91
P13 12.00 0.00 P28 15.00 1.91
P14 13.00 0.00 P29 16.50 1.91
PI5 14.00 0.00

Y t  >Ty ica ro  nse.
P_%Po22 Pt_4 P_SI

Pd8 09 P2103 P_5 P_6 P270 P_9 -- Offset (y= 1.91)

5.1 _ _ _ Centerline (y = 0)
P6PI6P5 P7 P8P9PIOPII PI2 PI3 P14 PI5 P17

i

x=0

Figure 9. Orientation of static pressure orifices along expansion ramp. Dimensions are in inches.
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focus plane

Source grid

_- Fresnel lenses

Nozzle

Image
cut-off grid

Image p

Motorized focus [

70-mm

_- Main focus lens
\

_ Turning mirror

/
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Figure 10. Layout of focusing schlieren flow visualization system.

12 equally spaced sonic nozzles exiting

Secondary plenum

Secondary

Primary plenum --_
8 equally spaced sonic
nozzles exitin

Flow direction

Primary S-tube

Flow

Balance 1636 ....... __

Balance
Secondary S-tube moment center

MS MS
0.00 5.50

MS
14.75

Aerodynamic balance faring

Choke plate

instrumentation section

Stratford choke
calibration nozzle

MS MS MS
17.75 21.75 24.25

Figure 11. Typical hardware setup for balance calibrations on propulsion simulation system.
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Internal flow

J

(a) Complete flow field.

iiiiiiil

(b) Close-up of throat and ramp.

Figure 12. Computational domain for concave ramp, low Mach number nozzle.
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(b) Close-up of throat and ramp.

Figure 13. Computational domain for concave ramp, high Mach number nozzle.
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(b) Resultant pitch thrust-vector angle.

Figure 14. Effect of throat location on internal performance of concave ramp nozzles.
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(b) Resultant pitch thrust-vector angle.

Figure 15. Effect of throat location on internal performance of convex ramp nozzles.
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(a)Density gradients along nozzle centerline; NPR = 3.75.

(b) Density gradients along nozzle centerline; NPR = 4.

Figure 16. Illustration of separation that occurs along convex expansion ramp, high Mach number nozzle as NPR increases.
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(b) Resultant pitch thrust-vector angle.

Figure 17. Effect of ramp geometry on internal performance of low Mach number nozzles.
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(b) Resultant pitch thrust-vector angle.

Figure 18. Effect of ramp geometry on internal performance of intermediate Mach number nozzles.
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(b) Resultant pitch thrust-vector angle.

Figure 19. Effect of ramp geometry on internal performance of high Mach number nozzles.
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(b) Resultant pitch thrust-vector angle.

Figure 20. Predicted and experimental data for concave ramp, low Mach number nozzle.
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Figure 21. Predicted discharge coefficient and experimental data for concave ramp, low Mach number nozzle.
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Figure 22. Predicted and experimental normalized static pressure distribution for concave ramp, low Mach number nozzle at
M = 0.05 and NPR = 13.

37



(a)Nozzleconfigurationwithnearsidewallremovedandmountedtotransitionsection.

Nearsidewall

(b)DensitygradientsalongnozzlecenterlineatNPR= 13.

Figure23.Concaveramp,lowMachnumbernozzle.
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Shear

layer

M

3.22521
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0.25967
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Figure 24. Predicted Mach contours along centerline of concave ramp, low Mach number nozzle at M = 0.05 and NPR = 13.

Figure 25. Streamline patterns along concave ramp, low Mach number nozzle at NPR = 13.
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Figure 26. Effect of grid density on internal nozzle performance for concave ramp, low Mach number nozzle at M = 0.05 and
NPR = 13.
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Figure 27. Solution convergence history for concave ramp, low Mach number nozzle simulation at M = 0.05 and NPR = 13.
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(a)Nozzleconfigurationwithnearsidewallremovedandmountedtotransitionsection.

(b)StreamlinepatternsalongconcaveexpansionrampatNPR= 13.

(c)DensitygradientsalongnozzlecenterlineatNPR= 13.

Figure28.Concaveramp,highMachnumbernozzle.
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Figure 29. Predicted and experimental normalized static pressure distributions for concave ramp, high Mach number nozzle at

M=0.1 and NPR= 13.
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Figure 30. Predicted Mach contours along centerline of concave ramp, high Mach number nozzle at M = 0.1 and

34054 iterations.

M

3.77776

3.64922

3.52067

3.39213

3.26359

3.13504

3.0065

2.87796

2.74941

2.62087

2.49233

2.36378

2.23524

2.1067

1.97815

1.84961

1.72106

1.59252

1.46398

1.33543

1.20689

1.07835

0.949804

0.821261

0.692717

0.564174

0.43563

0.307087

0.178543

0.05

NPR = 13 for

42



20

_p, deg

15

10

I I i I i I I I

1.1

1.0
Coarse
mesh Medium mesh Fine mesh

Cd'FA/Fi' .9
Fr/Fi

.8 %
...... FA/F i

........... Fr/F i

.7 a I I I J I i I I I I I I
0 5000 10000 15000

Iterations

Figure 31. Solution convergence history for concave ramp, high Mach number nozzle at M = 0.1 and NPR = 102.
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Figure 32. Predicted Mach contours along centerline of concave ramp, high Mach number nozzle at M = 0.1 and NPR = 102.
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Figure 33. Predicted normalized static pressure distributions at each grid level for concave ramp, high Mach number nozzle at

M=0.1 and NPR= 102.
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